Easy Park Group 26

Muhammad Khan, CpE Lorenzo Casimir, EE Peter Nguyen, CpE Jayson Asplin, EE

Motivation

- For years on end, students and faculty complain about on campus parking.
- To alleviate the stress of parking during peak times.
- To reduce the amount of time to find parking.
- To relieve traffic congestion around campus.

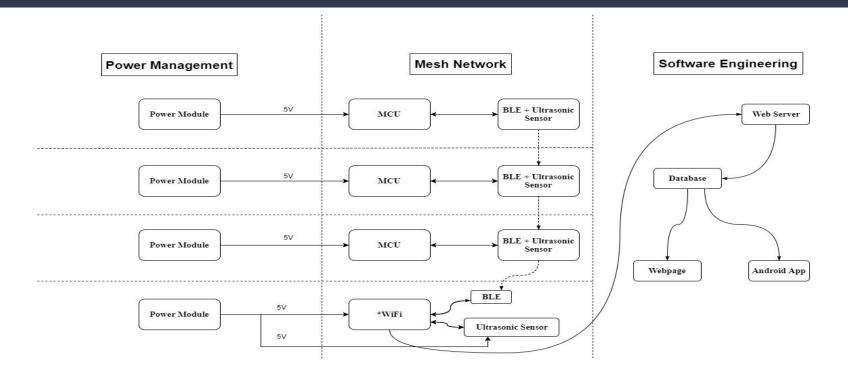
Goals & Objectives

- Implement the use of sensors, or a deep learning algorithm, to detect occupied parking spaces.
- Retrieve the data from the low-powered microcontroller back to a server of any parking space(s) available.
- Design a system that is low cost and low-powered.
- App capability for monitoring parking occupancy in real time.
- Energy harvesting without using power provided by UCF.
- Low maintenance frequency.

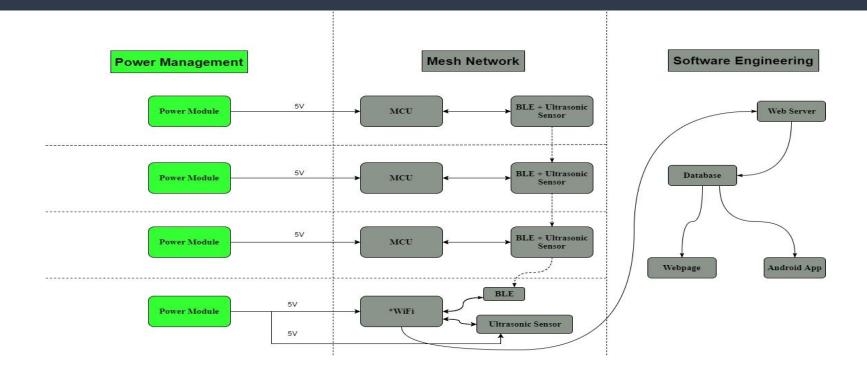
Specifications and Requirements

L,W = 5 in by 4 in

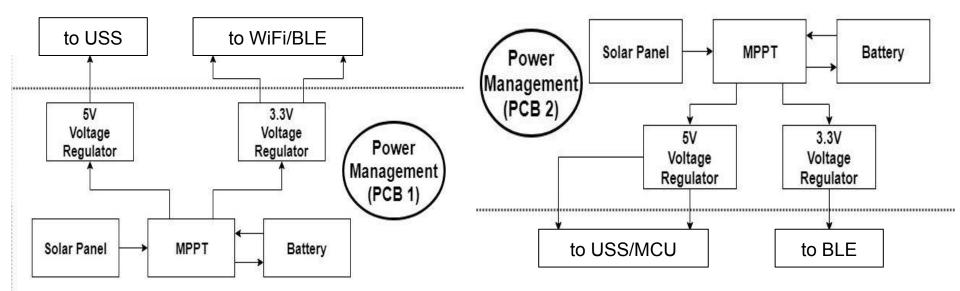
Thickness < 2 in

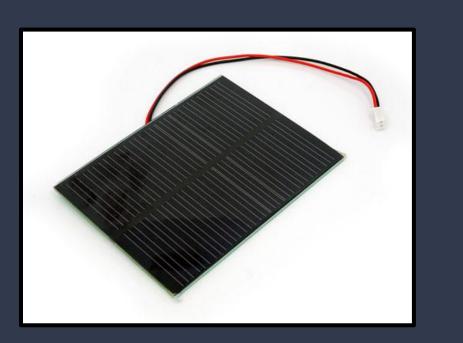

Power Dissipated Max < 0.5W

App update rate ~ 10 sec


Sensing Range > 2 ft

Weight < 1 lbs


Main Block Diagram



Power Management Components

Power Module Components

Monocrystalline 1W Solar Panel Mtr. Seeed Studio

Solar Panel Selection

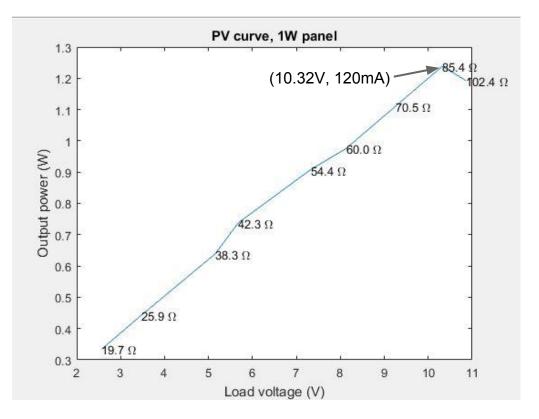
FEATURES

Dimension: 100x80x2.5(±0.2) mm

Efficiency: 15.5%

Typical peak power: 0.935W

Typical voltage: 5.5V


Typical current: 170mA

Open-circuit voltage: 8.2V

Maximum load voltage: 6.4V

Weight: 33g

Cost: \$4

This plot illustrates the PV curve testing the two 1W panel in series with a range of resistor loads from 19.1 ohms to 102.4 ohms.

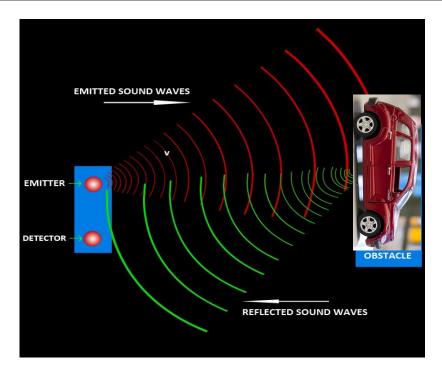
We found the maximum power point around (10.32V, 120mA) using a 80.4 ohm, 2W load resistor.

PV Curve, 1W Panel Testing

Battery Selection

EBL 840 9V Li-ion

- Rated capacity: 600 mAh
- Estimated battery life: ~5 hours
- Protection provided
- Cost: ~\$4.75


Ipower IP 9V Lithium Polymer (LiCoO2)

- Rated capacity: 700 mAh
- Estimated battery life: ~5.5 hours
- Protection provided
- Cost: ~\$19.95

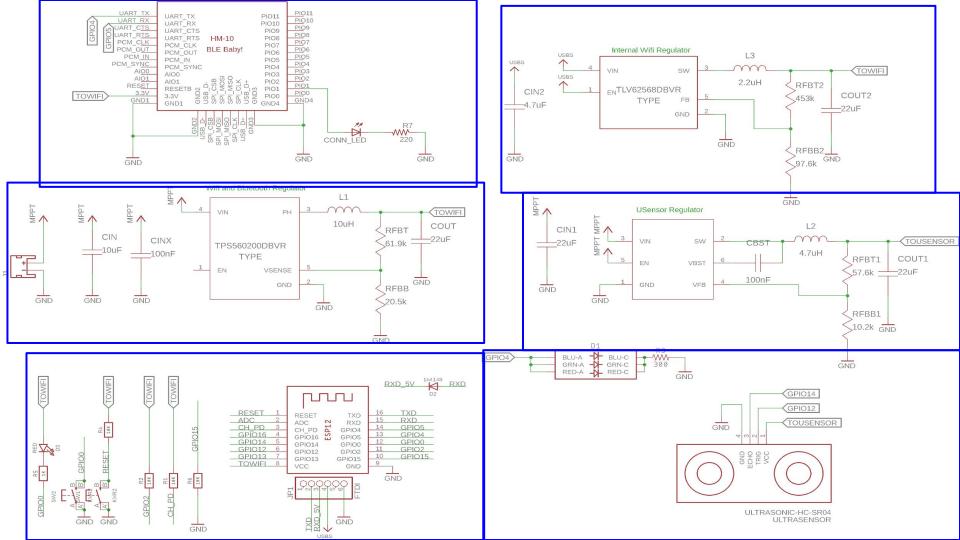
HC-SR04 Ultrasonic Module

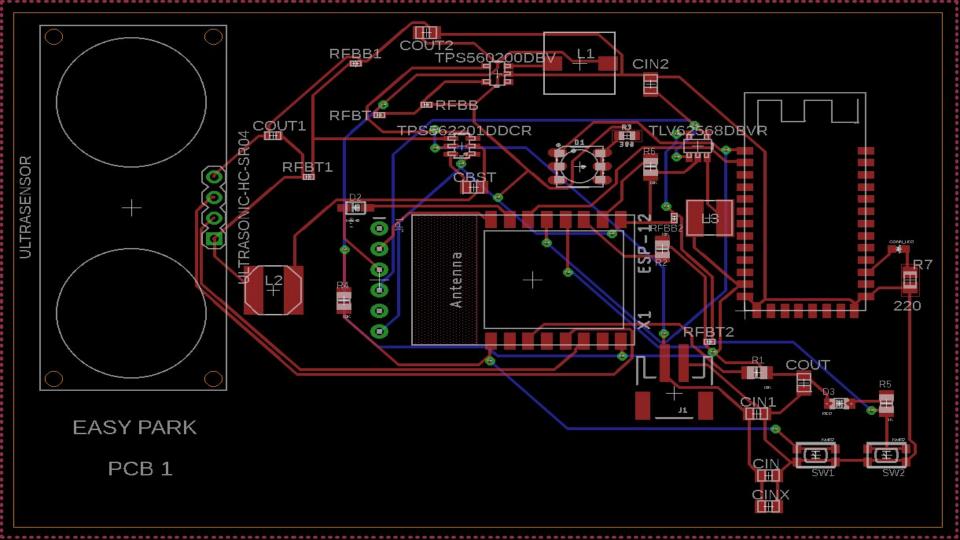
Features	Specifications
Operating Voltage	5VDC
Operating Current	15mA
Effectual Angle	<15°
Measuring Angle	30°
Min-Max Range	2cm-4m
Dimension	45mm x 20mm x 15mm
Cost	\$3 ea.

MPPT Selection

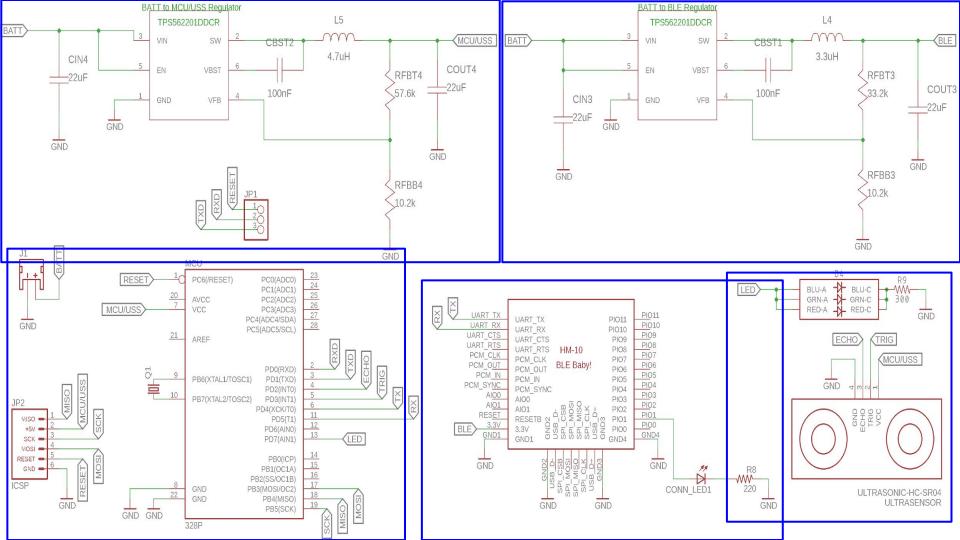
BQ24650 Solar Battery Charge

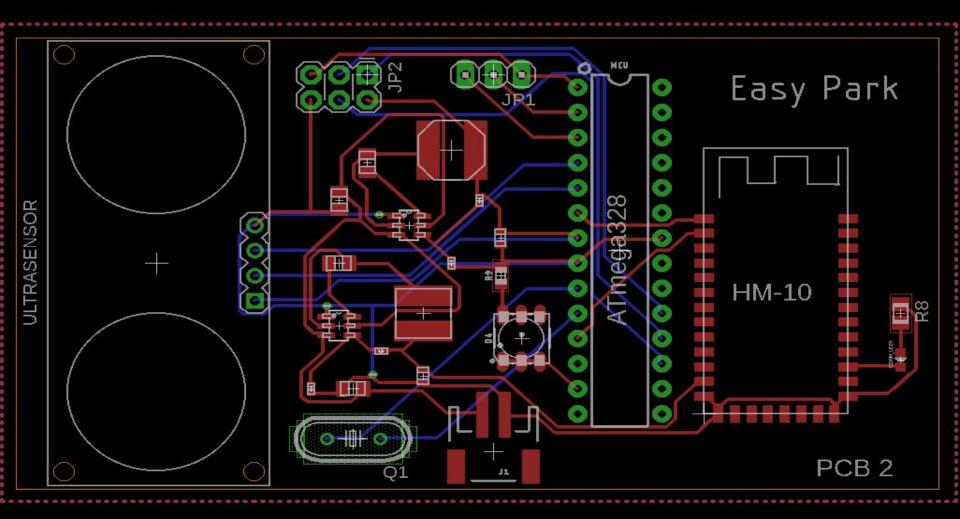
Controller

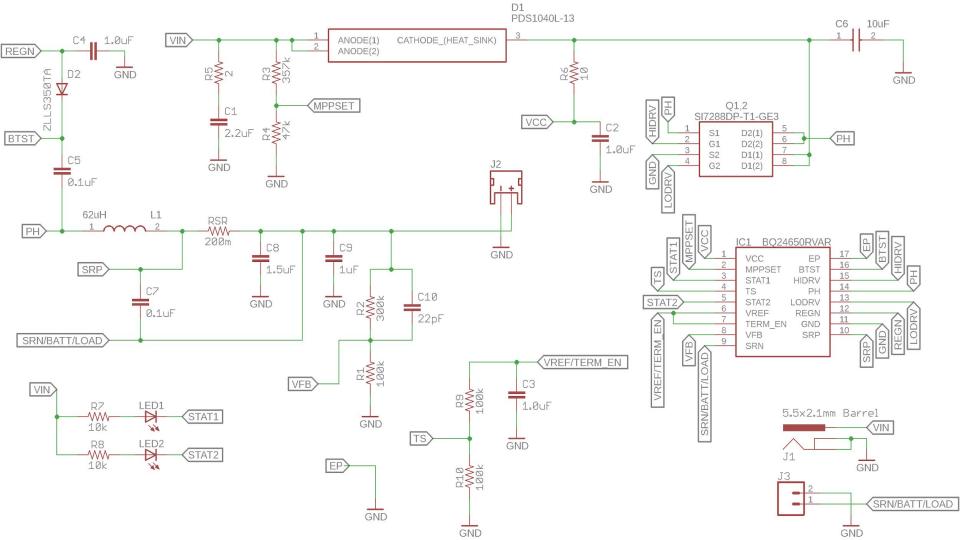

- 5V to 28V Input Solar Panel.
- 2.1-V to 26-V Battery Charge Voltage.
- 10A Charge Current (Max).
- Switch-Mode Buck Control Topology.

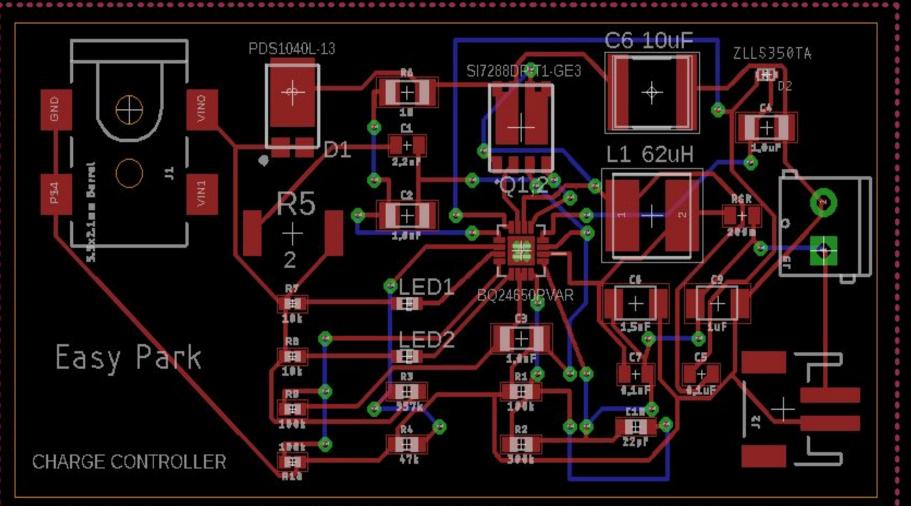

Regulator Chips

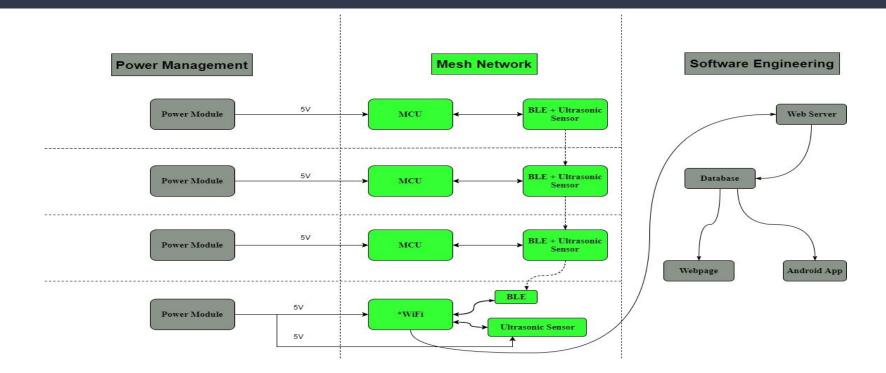
.


TLV62568DBVR	TPS560200DBVR	<u>TPS56220(0,1,8)DDCR</u>
Input Voltage: 2.5V - 5.5V	• Input Voltage: 4.5V - 17V	• Input Voltage: 4.5V - 17V
• Output Voltage: 0.6 to Input	• Output Voltage: 0.8V to 6.5V	• Output Voltage: 0.76V to 7V
• Efficiency: Up to 95%	• Efficiency: Up to 90%	• Efficiency: Up to 95%
• Overcurrent Protection	• 500mA Current	• Advanced Eco at low loads
• Soft Start Current	• Soft Start Time: 2ms	• Soft Start time: 1ms
• Cost: \$0.38	• Cost: \$0.32	• Cost: \$0.35


Main PCB with Wifi (Schematic & PCB Layout)




Mesh Network PCBs (Schematic & PCB Layout)


Solar Charger PCB (Schematic & PCB Layout)

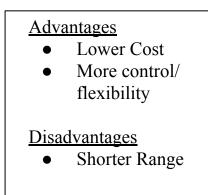
Mesh Network Components

*The WiFi module has a built-in MCU that would be utilized instead of the ATMega.

Mesh Network Components Comparison

	Zigbee	Bluetooth LE
Current Consumption	~200mA	8.5mA
Range	291m	77m
Transmit Power	100mW	10mW
Network Type	LAN	PAN

<u>ZigBee</u>


<u>Advantages</u>

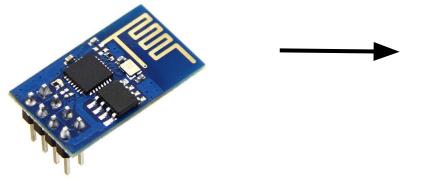
- Easy to setup mesh network
- Longer Range

<u>Disadvantages</u>

- Higher cost
- High latency

Bluetooth LE

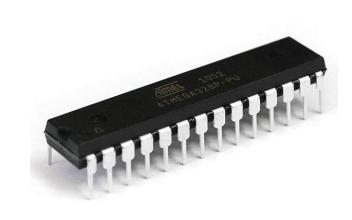
HM-10 BLE (Bluetooth Module)


Features	Specifications	
Range	100m (open space)	
Working Temperature	-5 ~ 65 C	
Power (Active Mode)	8.5mA	
Input Voltage/Power	+3.3VDC/ 50mA	
Power (Sleep Mode)	400uA~1.5mA	
Chipset	TI CC2541	
Cost	~\$7.00	

ESP8266 WiFi Module

- Good arduino and community support.
- Somewhat easy to program
- Powerful built-in MCU
- Has quite a few digital pins
- Cost: \$3.00

ESP - 01



Huzzah ESP - 12F

MCU: ATMega328P-PU

- Multiple digital I/O pins.
- Low power module (especially in deep sleep mode).
- Great arduino library support and sketches.
- Easy to program with other modules.
- Cost: \$3.00

LED

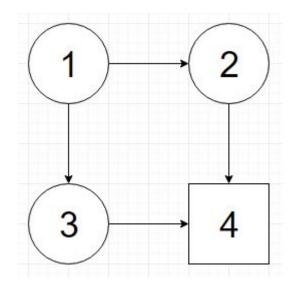
5050-G3500 SMD LED

- Input Forward Voltage: 3.2V 3.4V
- Viewing Angle: 120 Degrees
- Input Current: 20 mA
- Lumens: 11
- Visible Frequency: 50 Hz
- Cost: \$0.50

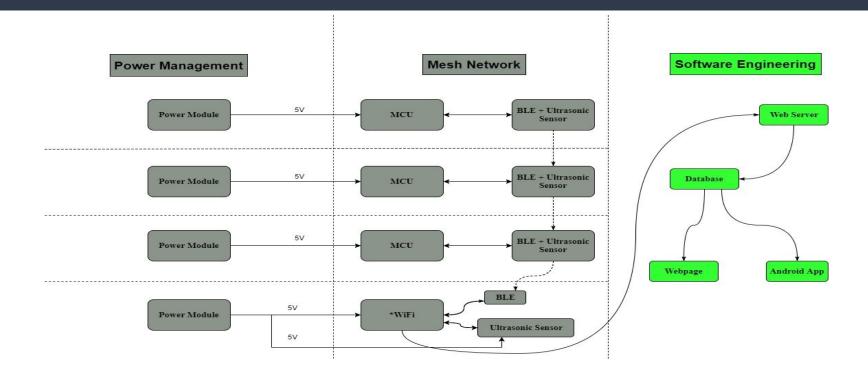
How we programmed the mesh network?

<u>Hardware Serial</u>

- Programmed through AT commands at the serial input stream.
- Usually to test each ultrasonic or bluetooth module.
- Command is executed directly with the module.


Software Serial

- Programmed through AT commands, but written in code.
- To make the mesh network possible after hardware serial testing is a success.
- Code is stored and flashed at the MCU.


```
void setup(){
Serial.begin(9600);
BTSerial.begin(9600); // default baud rate
while(!Serial);
Serial.println("AT commands: ");
delay(1000);
BTSerial.write("AT");
delay(500);
BTSerial.write("AT+IMME1");
delay(500);
BTSerial.write("AT+ROLE1");
delay(1500);
BTSerial.write("AT+CON3CA308966811");
delay(5000);
BTSerial.write("AT");
```

How we programmed the mesh network?

- Ultrasonic sensors detect the difference in distance through sound waves.
- It then triggers BLE communication.
- The BLE will communicate with each other
- The last node will send the data to database/server
- Rudimentary mesh network.

Software Engineering Components

Web Server

- Using a free web hosting domain.
- Specifics are www.000webhost.com
- Web Page shown below (to view the database, written in PHP).
- Arduino communicates with the web server.

Easy Park

First Floor Parking Spots

ParkingSpot 1 ParkingSpot 2		ParkingSpot 3	ParkingSpot 4	
Occupied	cupied Occupied		Vacant	

Database

- Amazon relational database
- Storage capacity ~ 20GB
- Enough to cover all parking garages at UCF.
- Web server communicates with the database, written in PHP code.

Amazon RDS ×	mydbinstance		Instance act
Dashboard	Summary		
Instances Clusters Performance Insights peoper	Engine DB instance MySQL 5.6.37 db.t2.micr	ce class info DB instance status ro available	Pending maintenance none
Snapshots Reserved instances	CloudWatch (17)	Add instance to compare Mo	onitoring V Last Hour
Subnet groups Parameter groups Option groups	Legend: mydbinstance		< 1 2 3 > 🥥
Events Event subscriptions Notifications	CPU Utilization (Percent)	DB Connections (Con 0.75 0.5 0.25 0 02/09 1330	02/09 14:00

Mobile App

Android Studio

<u>Advantages</u>

- Stronger Platform
- Good Documentation

Disadvantages

• Android only

<u>JQueryMobile</u>

<u>Advantages</u>

- Cross Platform
- Better for mobile applications
- Easy to use/develop

Disadvantages

• Limited capabilities

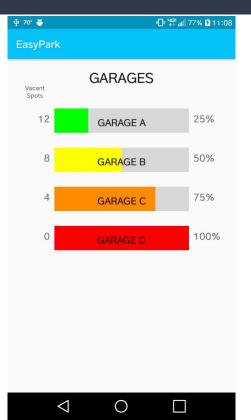
<u>Bootstrap</u>

<u>Advantages</u>

- Better for web applications
- Easy to use/develop

Disadvantages

• Not good for Mobile applications


Mobile App

Design Goals

- Keeps eye off app as much as possible
- Easy to use
- Quick to use

Key Features

- Colored progress bar
- Map

Administration

Task Breakdown

	Jayson	Lorenzo	Muhammad	Peter
Wireless Communication	-	-	Р	Р
Power Systems	Р	Р	S	-
PCB Design	Р	Р	S	S
Mobile App	-	-	S	Р
Server/Database		-	Р	S

P: Primary

S: Secondary

Budget

Parts	Quantity	Unit Price	Development Cost
AMS117-5 Voltage Regulator	10	\$0.81	\$8.10
AMS117-3.3 Voltage Regulator	5	\$1.80	\$9.00
Arduino Nano	8	\$3.88	\$31.04
Barrel Jacks Adapters and connectors	10	\$0.67	\$6.70
Breadboard	6	\$3.32	\$19.89
ESP8266 w/ breakout board	3	\$4.10	\$12.30
ESP-12F w/ breakout board	1	\$10.00	\$10.00
HC-SR04	10	\$1.70	\$17.00
HM-10 /w breakout board	4	\$10.00	\$40.00
Jumper Cables	120	\$0.05	\$6.00
Solar Buddy (MPPT)	1	\$24.95	\$24.95
Solar Panels (.5W)	3	\$1.95	\$5.85
Solar Panels (1W)	5	\$3 <mark>.95</mark>	\$19.75
Total Cost			\$210.58

Budget

Parts	Quantity	Unit Price	Development Cost	Build of Material Cost(PCB1)	Build of Material Cost(PCB2)	Build of Material Cost(Solar Charging)
ATMega328p	10	\$3.00	\$30.00	\$0.00	\$3.00	\$0.00
Barrel Jacks Adapters and connectors	10	\$0.67	\$6.70	\$0.00	\$0.00	\$0.67
ESP-12F	2	\$3.00	\$6.00	\$3.00	\$0.00	\$0.00
HC-SR04	10	\$1.70	\$17.00	\$1.70	\$1.70	\$0.00
HM-10	4	\$7.00	\$28.00	\$7.00	\$7.00	\$0.00
Solar Panels (1W)	5	\$3.95	\$19.75	\$0.00	\$0.00	\$3.95
JST connectors	10	\$0.50	\$5.00	\$0.50	\$0.50	\$0.50
HC49S Crystal(PCB2)	5	\$0.58	\$2.89	\$0.00	\$0.58	\$0.00
Lithium Polymer Battery	4	\$5.00	\$20.00	\$5.00	\$5.00	\$0.00
PCB1	3	\$16.40	\$49.20	\$16.40	\$0.00	\$0.00
PCB2	3	\$9.85	\$29.55	\$0.00	\$9.85	\$0.00
Solar Charger PCB	3	\$5.93	\$17.80	\$0.00	\$0.00	\$5.93
Basic Parts PCB1	1	\$ <mark>4.4</mark> 0	\$4.40	\$4.40	\$0.00	\$0.00
Basic Parts PCB2	1	\$3.43	\$3.43	\$0.00	\$3.43	\$0.00
Basic Parts BqSC	1	\$9.35	\$9.35	\$0.00	\$0.00	\$9.35
Packaging	4	\$1.13	<mark>\$4.5</mark> 0	\$1.25	\$1.25	\$0.00
Total Cost			\$253.56	\$39.25	\$32.31	\$20.40
Total Expenses			\$410.69			

Successes and Difficulties

Successes:

- Able to program the new WiFi and use its MCU.
- Built an in-house working Bluetooth Mesh Network.
- Working android app.
- Solar charger works with PCBs.

Difficulties:

- Implementing and finding parts (EE).
- Learning curve for programming an Android app.
- Uploading sketches to ATMega328P-PU without an UNO.
- Having the mesh network run on the PCBs.
- Interference between BLE and PCB due to ground plane.

Questions?